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With the advent of the era “everything is service ", the emergence of Web services on the Internet is
experiencing an exponential growth trend. How to recommend services to users that utilize sequential
historical records has become one of the most challenging research topics in service computing.
Tensor Factorization (TF) and Long Short Term Memory (LSTM) networks are two typical application
paradigms for sequential service recommendation tasks. However, TF can only learn static short-term
dependency patterns between users and services, ignoring the dynamic long-term dependency patterns
between users and services. Although LSTM in Deep Leaning can learn dynamic long-term dependency
patterns, it often encounters the trouble of vanishing gradient due to its complex gated mechanism. To
address these critical challenges, we develop a novel model based on Deep Learning named Recurrent
Tensor Factorization (RTF) with three innovations: (1) Three-dimensional interaction tensor of user-
service-time was granulated into three fixed-size embedding dense vectors. (2) Personalized Gated
Recurrent Unit (PGRU) and Generalized Tensor Factorization (GTF) simultaneously work on shared
embedding dense vectors to memorize the long-term and short-term dependency patterns between
users and services respectively. (3) Armed with GTF and PGRU, RTF is competent to predict the
unknown Quality of Service (QoS) through comprehensive analysis. Experiments are conducted on
real-world dataset, and the results indicate that our proposed method obviously outperforms six
state-of-the-art time-aware service recommendation methods.
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1. Introduction

With the advent of cloud services, big data, and the Internet
of Things (IoT) era, various Web services (e.g., cloud services,
mobile services, etc.) are emerging on the Internet, which make
it difficult for engineers to select appropriate services when de-
veloping Web APIs. In service computing, recommending services
to users to meet changing needs over time has become a crucial
issue. Quality of Service (QoS) quantifies the behaviors (or pref-
erences) of the users in service-oriented recommenders, which
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is expressed as services’ non-functional attributes (i.e., response
time, throughput, and cost). Therefore, predicting the QoS of
different non-functional attributes is the most challenging task
of service recommendation.

Since Shao et al. [1] applied collaborative filtering (CF) to
service recommendation, a large number of CF-based service rec-
ommendation methods have been proposed [2-6]. In both indus-
try and academia, CF-based approaches have been widely used
to employ users’ historical behaviors (or preferences) to predict
services that a current user would most likely to prefer. How-
ever, CF-based methods have the following two shortcomings: (1)
Similarity calculations employed by CF-based methods can only
learn low-dimensional and linear features between users and
services. (2) The real-world data sparsity problem significantly
affects their recommendation performance owing to inadequate
feature learning.
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To compensate the shortcomings of CF and further improve
the accuracy of recommendation, researchers [7-14] came to in-
tegrate contextual information (e.g., location, trust, and time) into
similarity calculation of CF-based methods. For instance, Chen
et al. [9] utilized location and trust information and proposed a
trust-aware and location-based approach to predict the quality
of service. Tang et al. [15] incorporated the locations of users and
services into similarity calculation, which improved the accuracy
of QoS prediction. In addition to location and trust, the influence
of time information in service recommendation has also been
studied in recent works [10,11,16,17]. For example, Hu et al. [11]
proposed an improved time-aware Web service recommendation
method. Zhang et al. [17] proposed a time-aware personalized
QoS prediction framework named WSPred.

Although existing time-aware service recommendation meth-
ods can effectively use time information for service recommenda-
tion, the following problems still exist: (1) Lack of effective up-
date mechanism to process new coming data. (2) Normally only
learn static short-term dependency mode between users, services
and times. In order to solve these problems, Recurrent Neural
Networks (RNNs) in Deep Learning (DL), such as Long Short
Term Memory (LSTM) and Gated Recurrent Unit (GRU), have been
widely adopted. For example, Personalized LSTM-based Matrix
Factorization (PLMF) is proposed by Xiong et al. [16], which is
capable of learning dynamic long-term dependency patterns and
provides an effective updating mechanism for new coming data.
However, LSTM may cause problems such as vanishing gradient
and exploding gradient due to complicated gated mechanism.
GRU used in this paper is a variant of LSTM, whose simpler gated
mechanism and powerful memory ability make it possible to
solve LSTM'’s shortcomings. The main contributions of this paper
are described as follows:

(1) This paper proposes a novel Deep Learning based time-
aware service recommendation framework named Recurrent Ten-
sor Factorization (RTF), which combines Tensor Factorization (TF)
with Deep Learning (DL) for time-aware service recommendation.

(2) Two sub-methods, Generalized Tensor Factorization (GTF)
and Personalized GRU (PGRU), are developed for time-aware ser-
vice recommendation.

(3) A hybrid loss function is designed to consider both L1 loss
and L2 loss for preventing the model’s unbalanced fitting problem
on multiple evaluation metrics.

(4) Experiments conducted on real-world Web service dataset
indicate that our proposed method significantly outperforms six
state-of-the-art methods.

The rest of this paper is organized as follows. Related work
is discussed in Section 2. Section 3 presents the preliminary
knowledge of this work. Section 4 describes the method of the
study. Section 5 shows the experimental results and analysis.
Finally, brief conclusions are given in Section 6.

2. Related work

Depending on whether time information is used, service rec-
ommendation methods can be classified into two categories:
time-aware methods and non-time-aware methods.

2.1. Non-time-aware service recommendation

Non-time-aware service recommendation methods utilize the
granulated results of the time-aware method for a single time
slice regardless of the time information. The CF uses histori-
cal QoS values in single time slice to recommend services to
users, which is the most representative traditional method. For
instance, Wu et al. [18] improved the similarity calculation in CF
and proposed a ratio-based method for service recommendation.

Sun et al. [ 19] proposed a Normal Recovery Collaborative Filtering
(NRCF) for service recommendation. Chen et al. [20] proposed a
heuristic approach named iDiSC for service component deploy-
ment in the edge-cloud-hybrid system. Lu et al. [21] proposed
an extended IoT Big Data-oriented model named IoTDeM for
predicting MapReduce performances. However, CF-based meth-
ods are insufficient for learning features from data due to data
sparsity obstacle in real-world. Recently, an increasing number
of researchers have examined the impact of contextual informa-
tion, such as location [12,15,22] and trust [9,23,24], to further
improve the feature learning ability in CF. Although incorporating
contextual information helps to predict QoS values, CF-based
approaches only learn the linear relationship between users and
services. With the rapid development of Deep Learning tech-
nology, many researchers have combined Deep Learning with
CF to propose various methods in recent years, which can not
only learn the nonlinear relationship between users and ser-
vices but also alleviate the data sparsity problem. For instance,
Xiong et al. [25] combined a fully connected neural network
with WSDL text similarity calculation and proposed the Deep Hy-
brid Collaborative Filtering for Service Recommendation (DHSR).
Wu et al. [26] proposed a universal deep neural model (DNM)
for making multiple attributes QoS prediction with contexts by
combining fully connected neural networks with WSDL text in-
formation. However, none of the above research have studied
the effects of time information. Time information play a crucial
role in service recommendation since QoS performance is highly
related to invocation time [27]. Unlike these methods above, we
incorporate time information into service recommendation in this
work, which solved the limitations in these studies.

2.2. Time-aware service recommendation

Time-aware service recommendation methods utilize the gen-
eralized results of non-time-aware methods for multiple time
slices by incorporating time information. Time-aware methods
extend the user-service 2D matrix in non-time-aware methods
to the user-service-time 3D tensor. To utilize time information,
many service recommendation methods have been proposed.
Hu et al. [11] proposed an improved time-aware CF method that
uses the historical QoS records of the first 63 time intervals to
predict the QoS of the 64th time interval. Zhao et al. [28] proposed
a time-aware service recommendation model named CAPred,
which employs existing QoS records on different time slices to
predict missing data on each time interval. Yu et al. [29] proposed
a time-aware and location-aware CF algorithm for service rec-
ommendation. Although existing CF-based methods can achieve
the goal of time-aware service recommendation, it reduces the
3-dimensional user-service-time tensor to the two-dimensional
user-service matrix and fills in missing values in the users-
service matrix at each time interval. This dimension reduction
has the following three shortcomings: (1) Cannot learn the long-
term dependency pattern between users and services. (2) Cannot
afford the task of memorizing time series. (3) Cannot offer an
update mechanism for new coming data. Compared with convo-
lutional neural networks (CNNs) [30], neural networks such as
LSTM in Deep Learning is a more effective solution to solve these
problems. Xiong et al. [16] proposed a personalized LSTM-based
(PLMF) method for service recommendation. Although LSTM can
learn dynamic long-term dependency patterns, it often encoun-
ters the trouble of exploding gradient owing to its complex gated
mechanism. Fortunately, in order to solve these problems, many
variants of LSTM have been proposed, and the Gated Recurrent
Unit (GRU) proposed by Cho et al. [31] has become the most
popular one. Related studies [32,33] have demonstrated that GRU
outperforms LSTM in time modeling capabilities. GRU used in this
paper shows huge improvement over these works.
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3. Preliminaries

In this section, we briefly introduce the preliminary knowl-
edge in this study.

3.1. Matrix Factorization (MF)

Since the Nexfix competition, MF has been widely used by
many researchers in improving the prediction accuracy of rec-
ommenders. MF is often referred to Latent Factor Model (LFM) in
other works, which has outstanding performance in data dimen-
sionality reduction, missing data filling (or “sparse data filling”)
and implicit relationship mining.

Given a two-dimensional user-service QoS matrix Q;; of size
m x n, q;j represents QoS history true value when user i in-
vokes the service j. When the rank of the matrix satisfies r =
Rank(Q; ;) <« min(m, n), the prediction Q;; for Q;; can be written
as follows:

Q= Us" (1)
K

gij = Z(uikvjk) (2)
=1

where U is user factor matrix of size m x k, S is service factor
matrix of size n x k.

MF requires Q; jat least has one element per column, usually
optimized with the following loss function:

K

=2 = Yy = 5 Y~ Y’ ()

ijes ijes k=1

Common optimization methods include random gradient de-
scent method and least squares method.

3.2. Gated Recurrent Unit (GRU)

Although MF can simulate patterns between users and ser-
vices, it is hard for MF to handle patterns that fluctuate over
time. Furthermore, too many parameters in full-connected neural
networks has risen the possibility of over-fitting. Fortunately,
Deep Learning can exploit the useful features of data by propos-
ing more efficient structures. Recently, RNNs have been widely
employed in sequential analysis, such as speech recognition, lan-
guage modeling, and machine translation. RNNs can capture the
relationship between the current output of a sequence and pre-
vious information. RNNs memorize the previous information and
apply it to influence the subsequent output.

Assume that we have a long time series (x°, x', ..., xt). The
RNNs generate the output x' of the next state based on the
current input and the hidden state of the previous state h'~!, in
which h' is directly utilized for the output o (i.e., o' = h'):

ht = RNN(h*~1, x%) (4)

where RNN represents the current RNNs structure.

Common RNNs include Hopfield network [34], LSTM [35,36],
etc. Neural networks such as LSTM is gradually replacing Hop-
field network due to implementation difficulties. The LSTM was
developed for alleviating the vanishing and exploding gradient
problems that traditional RNNs may encounter. Although LSTM
can memorize the long-term dependency patterns between users
and services, there are still problems such as complex gate struc-
ture and large computational load. As discussed in Section 2.2,
we use GRU in this paper. As shown in Fig. 1, GRU consists of
two gating units: the update gate and the reset gate.

h

-

Xt

Fig. 1. Gated Recurrent Unit.

The first component in Fig. 1 represents the update gatez;.
The update gate z; determines how much information from the
previous time interval is used for next time interval, and the
update gate z, at time step t is calculated as follows:

Zr = Ug(Wth + Uzhe_q) (5)

where o represents a sigmoid function, and W, and U, are
weight matrixes.

The second component in Fig. 1 represents the reset gate
r:, which determines how much previous state information is
forgotten; r; is calculated as follows:

It = Ug(wrxt + Urhe_1) (6)

GRU comprehensively examines the update and forgetting
gates and generates the candidate state h; which is defined as
follows:

Rt = on(Wike 4+ U(re 0 he_1)) (7)

where o, represents hyperbolic tangent function, and o repre-
sents the Hadamard product.

The GRU obtains a hidden state at time t by linearly in-
terpolating the previous state h'~! and the candidate state h':

h'=(1-z)oh_i1+zoh (8)

The GRU combines LSTM'’s forget gate and input gate into a
single update gate and combines the cell state of the LSTM with
the hidden state as the new hidden state. The GRU can achieve
better performance than the LSTM.

4. Proposed model

In this section, we present our proposed Generalized Ten-
sor Factorization (GTF) and Personalized Gated Recurrent Unit
(PGRU) according to Section 3.

4.1. Generalized Tensor Factorization (GTF)

As described in Section 3.1, MF is a popular research topic
in the field of recommenders. TF is very similar to MF, since
TF is a high-order generalized product of MF. One-dimensional
vectors are first-order tensor, and two-dimensional arrays are
second-order tensor.
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Fig. 2. Personalized Gated Recurrent Unit (PGRU).

Recently, Aggarwal et al. proposed a special TF structure in
their study [37]. Inspired by their research, we propose Gener-
alized Tensor Factorization (GTF). Assume that we have user-
service-time QoS Tensor Q with size [ x m x n, Q can be further
factorized to three two-dimensional tensor (matrix): user factor
matrix U of size m x k, service factor matrix S of size n x k
and time factor matrix T of size d x k. Here, T also regarded as
context factor matrix since it can be replaced by any other context
informations, such as location and reputation. k is the size of the
latent factor. The candidate QoS prediction values corresponding
to the position (i, j, ¢) on the third-order tensor are calculated as
follows:

Qujc = (UST)ij + (UTT)ic + (ST e 9
k

Gijc = Z(uiqvjq + Uigte,q + Vjqtc,q) (10)
q=1

The original TF only learns the linear relationships among
users, services and times, which causes insufficient feature learn-
ing. To address this problem, we apply the single fully connected
perceptron layer to the candidate prediction value. The final
prediction value is as follows:

ai,j,c =fg(Wg‘-1i.j.c + bgtf) (11)

where f; here, we use Rectified Linear Unit (ReLu) for non-linear
transformation. Similar to the loss function of MF, GTF's loss
function is usually defined as follows:

1 1 A
J= 5 e = 3 Z(qi,]’.c = Gijc) (12)
ij,ces
Through these, GTF is capable of dealing with user-service-
time tensors with nonlinear feature learning.

4.2. Personalized Gated Recurrent Unit (PGRU)

As described in Section 3.2, the input to the main structure of
GRU takes into account the input vector x; from the current time
interval t and the hidden state h,_; at the previous time interval
t — 1. At each time interval, the GRU will generate the output
hidden state h; of the current time and use it for the next time t +
1. Since the operations and variables of the GRU at different time
intervals are equivalent, the GRU can theoretically be considered
as the result of the same network structure that is being infinitely
copied. As CNNs share parameters among different spatial lo-
cations, RNNs share parameters among different time intervals,

which enables the processing of arbitrary-length time-series data
using finite parameters. Expanding the GRU along the time axis,
we can obtain the structure shown in Fig. 2.

The expansion of GRU significantly impacts the training speed
of RNNs. As shown in Fig. 2, after the GRU is expanded into a time
series of length N, it can be regarded as N feedforward neural net-
works with intermediate layers. Similar to multilayer perceptron,
GRUs can be directly trained using backpropagation algorithms.
The method of training the GRU is generally referred to as Back-
Propagation through Time (BPTT). GRU is expert at processing
time series; thus, it can memorize the long-term behavior habits
of users. We determined that the output of the original GRU can
not be directly employed for personalized service quality pre-
diction. Therefore, we add a single-layer fully connected neural
network to the output of different time steps. Here, we define
our optimized GRU with a fully connected output layer as the Per-
sonalized Gated Recurrent Unit (PGRU). PGRU is a Deep Learning
based method for time-aware service recommendation.

4.3. Recurrent Tensor Factorization (RTF)

In this section, we integrate GTF with the PGRU to con-
struct our Recurrent Tensor Factorization (RTF). Specifically, RTF
is based on the following four steps: projection, initialization,
training and optimization.

4.3.1. Step 1: Projection

Since processing original 3D user-service-time tensors directly
consumes precious memory resources, we granulate the tensors
into the multiple cubes tensor. As shown in step 1 of Fig. 3, the
length, width and depth of each cube represent a user, a service,
and a time interval, respectively, and the value of the cube is
assigned a true QoS label. Then, we project the user, service and
time into the embedding space. Embedding performs one-hot
encoding and outputs three fixed-size dense vectors: user latent
vector, service latent vector and time latent vector. All latent
vectors are projections in latent space, and each vector is a unique
one-dimensional tensor that can be employed for neural network
training. Similar to Word2vec, Doc2vec, and GloVe, this projection
uses dense vectors to represent words or documents, which has
been widely used in natural language processing. This process is
formulated as follows:

uk = fo(WIxY) (13)

s = fe (W) x°) (14)

where k represents the dimension of the latent vector; u¥, st and
tk are the user latent vector, service latent vector, and time latent
vector, respectively; and f¢ is the embedding activation. We use
standard identity functions. W, and W; represent the embedding
weight matrix, which we initialize according to the Gaussian
distribution. W, and W; can be separately learned using a model
persistence mechanism to initialize. Thus, the goal of accelerating
the convergence of the model and improving the expected effect
can be achieved. Embedding can extract useful information from
the data, which is necessary for feature extraction of neural
networks.

4.3.2. Step 2: Initialization

In supervised learning, the initialization of model parameter is
the key to the training process. PGRU and GTF require different
inputs and therefore need to be initialized separately. As shown
in Fig. 3, for PGRU, we concatenate the user latent vector with
the service latent vector to acquire the input vector required by
PGRU at time interval t. We initialize the hidden state at the
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Fig. 3. Overall architecture.

current time interval to time embedding vector. Since RTF models
patterns between users, services and times in two paths. Inspired
by [38,39], RTF directly connects the outputs of these two paths.
The formula defines as follows:

xe = p(u*, s*) = (u¥, s) (15)

he =t (16)

where ¢ represents concatenation, h' represents the hidden state
at time ¢.

4.3.3. Step 3: Training

After unfolding through the time, RNNs can be regarded as
the feedforward neural network of N intermediate layers. Step 3
in Fig. 3 describes the forward propagation process of the RTF.
Recurrent Tensor Factorization (RTF) proposed by us uses the
maximum function to connect GTF and PGRU. Formula defined
as follows:

é;gru :fP(WP}’t + bP) (17)
Qly = fe(Wey; + be) (18)
érttf = max(égttf’ étfgru) (19)

where é;gru, Qg‘tf, and thf represent the outputs of PGRU, GTF
and RTF, respectively; fp and f; the ReLu activation; y; and y; the
outputs of GRU and TF, respectively.

4.3.4. Step 4: Optimization

The neural-network-based model optimizes the target param-
eter by defining the loss function. The choice of the loss function
plays a crucial role in the final effect of the model. To address
different usage scenarios, supervised learning tasks can be di-
vided into classification and regression. In classification tasks,
commonly employed loss functions are cross-information en-
tropy loss, zero loss, logistical loss and hinge loss. In the model
used in classification tasks, the output is often the probability that
the current input belongs to each class. Unlike the classification
problem, the regression problem solves the prediction of specific
values. In regression tasks, commonly employed loss functions
are the least absolute loss (L1), least squared loss (L2), and Huber
loss [40]. L1 measures the sum of the squared error between
the predicted value and the true value but lacks robustness for
outliers in the data. L2 measures the absolute value of the error
between the predicted value and the true value which is robust
to outliers; however, the optimal solution can be easily missed
due to the fixed gradient. The Huber loss combines L1 with L2
using hyper-parameter and offers the following idea: L1 loss is
employed when the error is large, and L2 is employed when the
error is small. However, it is difficult to determine the hyper-
parameter. To tackle these obstacles, we proposed the hybrid loss
that combines L1 loss and L2 loss using a weighting factor to share
similar spirit with Huber loss. In this way, hybrid loss helps bridge
the gap between L1 loss and L2 loss, and is defined as follows:

11:] = L,(Q", 0") = () \Qf —qQ! (20)
~ ~ 2

12:] = Q" Q) = (0) (¢ - Q) (21)

Hybrid Loss = SL1 + (1 — §)L2 (22)
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where o () represents true value weight. § represents the
weighting factor used to balance L1 loss and L2 loss, of which
the default value is set to 0.5.

In addition to the loss function, another concept that is critical
to neural networks is the optimization algorithm. Currently, the
mainstream neural network optimization algorithms include the
backpropagation algorithm and the gradient descent algorithm.
The gradient descent algorithm focuses on optimizing the value
of a single parameter, while the backpropagation algorithm uses
gradient descent for all parameters. Thus, the loss of the neural
network model using training data is as small as possible. In
RNNs, the most extensively employed update method of the
model parameters is the Backpropagation-Through-Time (BTT)
algorithm. The optimizer is the container of the optimization
algorithm. We have experimented with optimizers such as RM-
Sprop [41], Adadelta [42], Adam [43], Nadam [44], among which
the Adam optimizer performs best. Thus, we choose Adam as the
Optimizer. Due to the space setting, the derivation formula for
the optimization algorithm is omitted here. To make the model
more robust in the test data line, we adopted a regularization
mechanism, dropout mechanism, and sliding average mechanism
to prevent overfitting of the model. The L2 regularization adds
a bias term to the network weight. Dropout refers to randomly
disconnecting the input neurons by a certain probability (rate)
each time the parameter updates. The sliding average mecha-
nism enables the learning rate to decay each time the parameter
updates. The sliding average mechanism is defined as follows:

I'=1x (1+ decay - epoch)™! (23)

where [ and I’ are the learning rate before update and the learning
rate after update, respectively; decay is the decay factor, and
epoch is the current iteration number. The above formulas are
all progressive.

5. Experiments

In this section, we conduct experiments to evaluate our pro-
posed method and compare it with the six most advanced meth-
ods. We answer the following questions:

(1) Can our proposed method be superior to the state-of-
the-art service recommendation methods? Does time information
impacts recommendation accuracy?

(2) Can RTF capture the complex dependency patterns be-
tween users, services and times? Does the integration of GTF and
PGRU contribute to recommendation performance?

(3) Can our proposed hybrid loss balance the global perfor-
mance of the model across multiple evaluation metrics? Does it
improves the fitting ability of the model compared to other loss
functions?

(4) Why we have to use dropout? Can overfitting be alleviated
by dropout to some extent?

5.1. Dataset

Our experiments are conducted on the public dataset WS-
Dream QoS dataset#3 provided by Zheng et al. [45], which is the
most representative dataset and has been widely used in related
works [46-48]. This dataset describes real-world QoS measure-
ments from 142 users on 4532 Web services over 64 consecu-
tive time intervals (each interval is 15-minute). Each QoS mea-
surement includes two QoS nonfunctional attributes: response
time and throughput. We can extract two sets of user-service-
time tensors with response time or throughput attributes of
142 %4532 x 64 from the dataset, where the first dimension of the
tensor represents the user, the second dimension represents the
service, and the third dimension represents the time interval.

5.2. Pre-processing

To make our experiment more realistic, we randomly remove
some entries from the original user-service-time tensor and com-
pare the predicted values of the method with the original values
to produce the tensors at different densities. For example, 5% in-
dicates that only 5% of the entries are reserved for the training set
of the model, and 95% of the entries that are randomly removed
from the original tensor serve as the test set for the model. The
detailed description is described as follows: assuming that the
current time interval is t (t varies from O to 63), the original
142x4532x64 QoS tensor can be sliced according to the time
dimension to obtain a two-dimensional tensor of 142x4532 in
64 dimensions. According to different densities, it can be further
divided into the training set Q. and the test set QL, which
can obtain 64 two-dimensional QoS tensors Q2. Q. . ..., Q} . for
training and 64 two-dimensional QoS tensors Q2 Q. .., QL for
testing. Our method will directly apply to each of these tensors.

5.3. Evaluation metrics

The mean absolute error (MAE) can offset the problem that the
errors cancel each other; thus, it can accurately reflect the predic-
tion error. The root mean squared error (RMSE) is very sensitive
to very large or small errors in a set of test cases and is an ade-
quate reflection of the precision of the prediction. We adoptMAE
and RMSE to evaluate the recommendation performance of the
method. MAE is defined as follows:

Zu,s Q(f,s - éut,s

MAE= ——— (24)
N

where Q, s is the QoS original value of user u who invoked the
service s at time interval t; éu,s is the predicted QoS value of user
u who invokes the service s at time interval t; and N is the total
number of QoS.

The RMSE is defined as follows:

RMSE = % > (Quﬁs - d@z (25)

u,s

5.4. Comparison methods

To further verify the effectiveness of our proposed method, we
compared the following six most advanced methods:

(1) UIPCC (User-based and Item-based CF) [49]: This method
combines the similar users and similar web services adopted in
UPCC and IPCC for non-time-aware service recommendation.

(2) PMF(Probability Matrix Factorization) [50]: This method
incorporates probabilistic factors into MF for non-time-aware
service recommendation.

(3) CLUS [51]: This method predicts the reliability for the on-
going service invocation for time-aware service recommendation.

(4) WSPred [17]: This method uses past invocation record for
time-aware service recommendation.

(5) NTF(Non-negative Tensor Factorization) [52]: This method
employs the non-negative tensor factorization approach for time-
aware service recommendation.

(6) PLMF(Personalized LSTM based MF) [16]: This method
combines LSTM with MF for time-aware service recommendation.

To make the experiments more convincing and comprehen-
sive, we choose these most representative comparison methods
to demonstrate the superiority of our approach. Among these
methods, (1)-(2) are popular non-time-aware service recommen-
dation methods, (3)-(6) are the most advanced time-aware ser-
vice recommendation methods, and (6) is a Deep Learning based
service recommendation method.
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Fig. 4. Topology diagram of experimental environment.

Table 1
Performance comparison (RQ1).

Response-time

Throughput

Metrics Methods Tensor density Tensor density
5% 10% 15% 20% 5% 10% 15% 20%

UIPCC 1.043 0.961 0.912 0.879 9.909 9.305 8.936 8.388
PMF 1.015 0.934 0.895 0.867 6.571 5.981 5.831 5.700
CLUS 0.919 0.886 0.856 0.830 5.628 4,769 4.198 4171

MAE WSPred 0.793 0.768 0.756 0.765 4.379 4.166 4.125 4.087
NTF 0.751 0.741 0.738 0.736 4.369 4.164 4.178 4.109
PLMF 0.788 0.758 0.741 0.739 4315 4123 4.083 4.032
RTF 0.668 0.630 0.612 0.535 4.139 4.025 3.874 3.799
UIPCC 2.094 1.975 1.920 1.880 43.890 41525 40.193 38.669
PMF 2.497 2.244 2.095 1.996 40.291 36.005 33.847 32.493
CLUS 2.223 2.263 2.249 2.217 34.549 31.087 28.260 26.502

RMSE WSPred 1.817 1.788 1.774 1.786 23.612 22.365 22.031 22.161
NTF 1.742 1.730 1.726 1.724 24.216 23.043 22.128 21.862
PLMF 1.815 1.767 1.742 1.736 25.635 24.523 23.845 22.102
RTF 1.732 1.666 1.634 1.636 22.781 20.809 20.166 19.897

5.5. Experimental settings

5.5.1. Environmental settings

The experimental topology diagram is shown in Fig. 4. In the
hardware environment, we use VMware ESXi to manage virtual
appliances (Spark cluster nodes). Each cluster node is configured
with 32 CPU cores, 128GB memory and 24TB disk storage, and
Ubuntu 16.04 is deployed on each node. Specifically, we use the
GPU-equipped device through the WinServer jump server. We
experimented on the node configured with NVIDIA Tesla K40C
(11 GB memory). In the software environment, we implement our
method on JupyterLab platform by using Keras API (TensorFlow
as the backend). Keras is an open-source Deep Learning library.
For traditional methods, we use their public C++ version, and for
PLMF, we choose its PyTorch version.

5.5.2. Parameter settings

We establish different tensor densities to construct training
sets and testing sets from 5% to 20% with a step size of 5%.
Both the embedding layer and the GRU layer of our method
use the standard Gaussian distribution to initialize parameters,
and for the output fully connected layer, the parameters are
initialized with the LeCun Gaussian distribution initializer. We
set the model learning rate to 0.001, and the optimizer uses the
Adam Optimizer. We set the activation of the GRU to a hyperbolic
tangent; the activation function to use for the recurrent step is

hard sigmoid. We set the dimension of the latent vector to 1024,
which enables the neural network to learn more information. For
other comparison experiments, we set the parameters according
to the original text, and no changes are made here. For PLMF and
our RTF, we run iterations 50 times and take the optimal value
after fitting the model.

5.6. Experimental results and analysis

In this section, we conduct substantial experiments to evaluate
our method.

5.6.1. Performance comparison (RQ1)

Experiments that compare our approach with six other meth-
ods under four tensor densities (%5~20%) have been conducted
and the corresponding results on response-time and throughput
are shown in Table 1.

In the response-time comparison, our RTF method has
achieved the best performance on both MAE and RMSE. When
evaluating MAE, UIPCC performs worst, followed by PMF and
CLUS. PMF, CLUS are non-time-aware service recommendation
methods. Note that WSPred, NTF and PLMF is significantly better
than UIPCC, PMF and CLUS, indicating that time information plays
a key role in service recommendation. Moreover, we can further
discover that the more data we provide, the more accurate the
recommendation. Since data sparsity in real-world may heavily
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Table 2
Comparison between different losses (RQ3).
Loss Response time Throughput
MAE RMSE MAE RMSE
L1 loss 0.631 1.751 3.692 27.403
L2 loss 0.718 1.709 4.808 21.660
Hybrid loss 0.682 1.719 4.206 21.728

restrict the features learning ability, it is worthy embedding
context information such as time into service recommendation.

In the throughput comparison, our method is also signifi-
cantly better than the other six methods. Specifically, time-aware
methods (i.e., CLUS, WSPred, NTF, PLMF and RTF) are superior to
non-time aware methods (i.e., UPCC and PLMF), which reveal the
crucial impact of time information in service recommendation.
By comparing the time-aware methods, we may see that PLMF
outperforms CLUS, WSPred, which indicates the superiority of
Deep Learning. What is more, our RTF is largely superior to PLMF
which proves our previous conjecture that GRU is better than
LSTM. From the above discussion, we may conclude that RTF is
superior to the six most advanced methods, and time information
plays a key role in service recommendation.

5.6.2. Impact of integration (RQ2)

In Section 4, we proposed three time-aware service recom-
mendation methods: GTF, PGRU and RTF, and here we will ex-
plore the correlations between them. The experimental results
performed under four tensor densities (5%~20%) are shown in
Fig. 5.

In response time comparison, the performance of GTF is the
worst for all tensor densities, the RTF performs best, and the per-
formance of PGRU is in middle. After analysis, we believe that GTF
only remembers short-term historical patterns between users,
services and times, which may cause insufficient feature learning.
PGRU is capable of remembering long-term dependency patterns
so that it is better than GTF. RTF combines the advantages of both
GTF and PGRU, thus RTF performs significantly better than GTF
and PGRU.

In throughput comparison, RTF achieves best performance,
followed by PGRU and GTF. PGRU is better than GTF when the
tensor density is only 5%, which indicates that RNNs can exploit
more useful information and alleviate the sparseness of actual
data. From what has been discussed above, we may conclude that
RTF can capture complex dependency patterns between users,
services and times by integrating GTF and PGRU.

5.6.3. Impact of hybrid loss (RQ3)

To prevent the unbalanced fitting problem, the hybrid loss
function defined as Eq. (22) is innovatively designed. In this part,
we have conducted substantial experiments within 5% tensor
density to compare the performance of using the hybrid loss
function with using the L1 loss (i.e., absolute error loss) and with
using L2 loss (i.e., squared error loss) functions. The experimen-
tal results on response-time and throughput are summarized in
Table 2.

In the comparison between the L1 loss and the L2 loss func-
tions, the unbalanced fitting problem can be easily found. The L1
loss function wins on MAE but loses on RMSE, while the L2 loss
function wins on RMSE but loses on MAE. Through theoretical
analysis, we believe that using single loss may lead to an un-
balanced fitting problem, because L1 loss and L2 loss are highly
relevant to MAE and RMSE, respectively. By comparing our hybrid
loss with other losses, the results indicate that the hybrid loss
function can solve the unbalanced fitting problem well.

5.6.4. Impact of dropout (RQ4)

As shown in Fig. 6, the experiments are conducted on single
time interval with a tensor density of 5%. Since these experi-
ments are independent of the time information, the conclusions
drawn from single time interval are the same as those obtained
at multiple time intervals. Fig. 6(a) shows the over-fitting phe-
nomenon, from which we can see asymmetric U-shaped curves
when evaluating on response time. The U-shaped curves mean
that the model over-learns the characteristics of the training data,
but lacks generalization ability for the new coming data.

The over-fitting discussed above may lead to a decline in the
generalization ability of the model. To prevent these, dropout
was used in our experiments. During the learning process, the
partial co-dependence of neurons is reduced by zeroing the par-
tial weight or output of the hidden layer, thereby reducing the
risk of over-fitting. Fig. 6(b) shows impact of dropout on our
model, and it is easy to find that all three curves are stable,
which indicates that dropout significantly alleviates over-fitting
problem in Fig. 6(a).

6. Conclusion

This paper innovatively proposes a Recurrent Tensor Factor-
ization (RTF) framework based on Deep Learning for time-aware
service recommendation, which aims to capture complex depen-
dency patterns between users and services. Under this frame-
work, Generalized Tensor Factorization (GTF) and Personalized
Gated Recurrent Unit (PGRU) collaborate to learn the short-term
and long-term dependency patterns between users and services.
On this basis, RTF can not only memorize the dynamic temporal
behavior of users, but also significantly alleviate the problem of
data sparsity in real-world.

Our future work will focus on two aspects: (1) use other
context information, such as location, reputation, etc., to further
validate the effectiveness of our method; (2) use more complex
neural network based on LSTM model to further improve the
accuracy of services recommendation.
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